A NEW PROCEDURE FOR HOMOLOGATION OF CARBONYL COMPOUNDS TO *d*-HYDROXY-CARBOXYLIC ESTERS BY MEANS OF DIETHYL-[TRIMETHYLSILYLETHOXYMETHYL]PHOSPHONATE Josef Binder und Erich Zbiral *

Institut für Organische Chemie der Universität Wien, A-1090 Wien, Währinger Straße 38, Austria

Summary: A synthesis of α -hydroxyesters 5 using the Peterson olefination of the α -trimethylsilyl-substituted phosphonate 2 to vinylphosphonates 3 followed by hydroxylation with catalytical amounts of 0s0₄ has been developed.

Among numerous methods¹⁾ for the conversion of aldehydes and ketones to homologous carboxylic acids the Wittig-Horner procedure with suitable α -substituted phosphonates is most important²⁾. The remarkable fact that 0,0-dialkylacetals of formylphosphonates cannot be lithiated even if t-BuLi is used^{2c)}, was the reason for the development of dialkoxymethyl diphenylphosphinoxides as homologation reagents³⁾. Another possibility for stabilizing carbanionic centres of an alkoxymethyl-phosphonate should be the additional introduction of a trimethylsilyl group at the α -C-atom. In this case the Peterson olefination should be preferred to the Wittig-Horner olefination⁴⁾.

In this paper we report on a suitable derivative of the title reagent $\underline{1}^{(5)}$ which can be employed for a homologation procedure leading to one carbon elongated carboxylic esters furnished with an additional α -hydroxy group.

$$(H_{5}C_{2}O)_{2}^{P-CH_{2}OCH_{2}CH_{2}Si(CH_{3})_{3}} \xrightarrow{1) s-BuLi} (H_{5}C_{2}O)_{2}^{O}_{2}^{H} \xrightarrow{1}_{si(CH_{3}C_{3})_{3}SiCl} (H_{5}C_{2}O)_{2}^{O}_{2}^{H} \xrightarrow{1}_{si(CH_{3}C_{3}O)_{3}SiCl} (H_{5}C_{2}O)_{2}^{O}_{2}^{H} \xrightarrow{1}_{si(CH_{3}C_{3}O)_{3}SiCl} (H_{5}C_{2}O)_{2}^{O}_{2}^{H} \xrightarrow{1}_{si(CH_{3}C_{3}O)_{3}SiCl} (H_{5}C_{2}O)_{2}^{O}_{2}^{H} \xrightarrow{1}_{si(CH_{3}C_{3}O)_{3}SiCl} (H_{5}C_{2}O)_{2}^{O}_{2}^{H} \xrightarrow{1}_{si(CH_{3}C_{3}O)_{3}SiCl} (H_{5}C_{2}O)_{2}^{O}_{2}^{H} \xrightarrow{1}_{si(CH_{3}C_{3}O)_{3}SiCl} (H_{5}C_{2}O)_{2}^{H} \xrightarrow{1}_{si(CH_{3}C_{3}O)_{3}SiCl} (H_{5}C_{2}O$$

$$\frac{2}{2} \xrightarrow{1) \text{ s-BuLi}}_{2) \text{ R}^{1}-\text{C-R}^{2}} (\text{H}_{5}\text{C}_{2}\text{O})_{2}^{\text{P}-\text{C-OCH}_{2}\text{CH}_{2}\text{Si}(\text{CH}_{3})_{3}} + (\text{CH}_{3})_{3}^{\text{SiOLi}}_{\text{R}^{1}}$$

Scheme 1

Phosphonate <u>1</u> is transferred to its α -trimethylsilyl-derivative <u>2</u>⁶⁾ (70%) using the inverse strategy⁷⁾ of adding the carbanion of <u>1</u> to (CH₃)₃SiCl in order to avoid disilylation.

In contrast to the instability of the phosphonate carbanion of 1 even at

 -70° C, the carbanion of phosphonate <u>2</u> is much more stable because of the stabilizing effect of the α -trimethylsilyl group. A sample prepared by deprotonation of <u>2</u> with s-BuLi at -30° C, shows a 99% incorporation of deuterium at the α -C-atom after having quenched the carbanion with D₂C after 30 min.

The Feterson olefination of 2 yields 1-(2-trimethylsilyl)ethoxy-vinylphosphonates 3 as E/Z mixtures (Scheme 1). Vinylphosphonates 3 represent starting materials not only for homologous carboxylic acids⁸, but also for the more useful preparation of the homologous α -hydroxy-carboxylic acids. Hydroxylation of 3 with $0s0_4$ -N-methylmorpholin-N-oxide (\underline{MNO})⁹ leads via the non-isolable diastereomeric mixture of 1,2-dihydroxyphosphonates 4 (not drawn in Scheme 2) to esters 5¹⁰ according to the well documented¹¹ cleavage of α -hydroxyphosphonates into carbonyl compounds and dialkylphosphite (Scheme 2). Other methods concerning the transformation of carbonyl compounds into homologous α -hydroxy acids are listed in lit.cit. 1.

$$\underline{3} (E/Z) \xrightarrow{O_{S}O_{4}/NMO} \underline{4} \xrightarrow{-(E_{5}C_{2}O)_{2}P_{0}} \xrightarrow{R^{1}}_{R^{2}} \xrightarrow{C-COCCE_{2}CE_{2}Si(CE_{3})_{3}}_{\underline{5}}$$

Scheme 2

An interesting detail is the appearance of the 2-trimethylsilylethyl residue in 5, a selectively removable carboxyl protecting group¹²⁾. The following Table summarizes some characteristic data and observations of phosphonates $\underline{3}$ and α -hydroxyesters $\underline{5}$.

	Phosphonate $\underline{3}^{i}$ R ¹ R ²	b.p. [°c]*	Yield [%]	a- Eydroxyester <u>5</u> b.p. [°C] (mm Hg) or m.p. [°C]	Yield [%]
<u>a</u>	-(CH ₂) ₅ - ⁱⁱ	90 - 95	88	b.p. 100-105 (2mm)	55
<u>d</u>	C C BHIL	non crystallized	85	$\begin{array}{c} \text{m.p. for} \\ \text{the C-3} \\ \text{isomers} \end{array} \end{array} \left. \begin{array}{c} 95-97^{\text{iv}} \\ 108-111 \end{array} \right.$	85
<u>c</u>	-CH(CH ₃) ₂ H	65-75	61	not distilled	50
d	p-Me0-Ph H	115-125	80	b.p. 85-90 (0.001)	40 ⁱⁱⁱ
e	m-MeO-Ph H	110-120	77	b.p. 80-83 (0.005)	40 ⁱⁱⁱ
f	Ph CH ₃	100 - 105	40	b.p. 60-65 (0.005)	25

Τ	а	b	1	e
-	_	_	_	-

 * bulb to bulb distillation (0.001 mm Hg)

- i) The E/Z ratio for compounds 3a-3f is approximately 1/1
- ii) Diethyl-[(2-trimethylsilyl)ethoxy-cyclohexyliden-methyl]phosphonate <u>3a</u> $\frac{1}{\text{H-NMR}}$ (250 MHz, CDCl₃): $\boldsymbol{\delta}$ = 0.00 (s, 9H, SiMe₃), 1.03 (m, 2H, CH₂SiMe₃), 1.33 (t, 6H, J=7.2 Hz, 2x0CH₂CH₃), 1.58 (bs, 6H, -(CH₂)₃-), 2.32 (bs, 2H, two allylic protons), 2.58 (bs, 2H, remaining two allylic protons), 3.72 (m, 2H, -0CH₂CH₂), 4.093 and 4.1 (quint. and quint., 2H and 2H, 2x $-0CH_2CH_3$). The spectral properties of compounds <u>3b-3f</u> are fully in agreement with the indicated structure. The ¹H-NMR patterns of <u>3b-3f</u> are more complicated because of E/Z mixtures.
- iii) Starting aldehyde was isolated too (25-30%).
- iv) Both C-3 isomers, (3RS)-3-hydroxy-cholestanic-3-carboxylic acid-(2-trimethylsilyl)-ethylester, could be obtained in pure form after chromatography (petroleum ether/ethyl acetate = 20/1); their ¹H-NMR spectra exhibit no real differences; a stereochemical assignment of both isomers using the shift reagent Eu(dpm)₃ was impossible.

References and Notes

- 1) For a review see St.F. Martin, Synthesis 1979, 633.
- 2)a) H. Gross, J. Keitel, Z.Chem. 22, 117 (1982).
 - b) B. Costisella, J. Keitel, H. Gross, Tetrahedron 37, 1227 (1981).
- c) M. Mikolajczyk, S. Grzejszczak, A. Zatorski, Tetrahedron <u>34</u>, 3081 (1978).
- T.A.M. van Schaik, A.V. Henzen, A. van der Gen, Tetrahedron Lett. <u>1983</u>, 1303.
- 4)a) D.J. Peterson, J.Org.Chem. <u>33</u>, 780 (1968).
- b) F.A. Carey, A.S. Court, J.Org.Chem. <u>37</u>, 939 (1972).
- 5) J. Binder, E. Zbiral, Tetrahedron Lett. 1984, 4213.
- 6) <u>Diethyl- [(2-trimethylsilyl)ethoxy-trimethylsilyl-methy]</u> phosphonate 2: To a solution of 1.2 equiv. of s-BuLi in 30 ml dry THF was added phosphonate <u>1</u> (5g, 18.6 mmol) in THF (10 ml) at -78°C under argon atmosphere. After stirring for about 30 min. at -78°C, the solution of the anion was added by cannula and argon pressure to a solution of an excess trimethylsilylchloride (28 mmol) in dry THF (10 ml) at -78°C. The reaction mixture was warmed to room temperature and poured into a saturated aqueous solution of NH₄Cl. Crude <u>2</u> was purified by flash chromatography (CH₂Cl₂/ethyl acetate ~10/1) and distillation to give a colourless liquid: B.p. 90-95°C (0.001 mm); yield: 70%. ¹<u>H-NMR (250 MHz, CDCl₃): **d** = 0.00 (s,9H, SiMe₃), 0.13 (s, 9H, SiMe₃), 0.90-0.95 (m, 2H, <u>CH₂SiMe₃), 1.30 and 1.31 (t and t, 3H and 3H, J=7.3 Hz, 2x OCH₂CH₃), 3.23 (d, J_{HP}=14.6 Hz, 1H, C<u>H</u>SiMe₃), 3.37-3.98 (m, 2H, O<u>CH₂CH₂-), 4.10 and 4.11 (quint. and quint., 2H and 2H, J_{HH}=J_{HP}=7.3 Hz, 2xO<u>CH₂CH₃).</u></u></u></u>

- 7) P.A.T.W. Porskamp, B.H.M. Lammerink, B. Zwanenburg, J.Org.Chem. <u>49</u>, 263 (1984).
- 8) These results will be published soon.
- 9)a) M. Schröder, Chem.Rev. <u>80</u>, 187 (1980).
- b) V. van Rheenen, R.C. Kelly, D.Y. Cha, Tetrahedron Lett. <u>1976</u>, 1973.
 10) General Procedure for the Conversion of 3 → 5:
- To vinylphosphonates $\underline{3}$ (0.80 mmol) in TEP/acetone/water = 9/1/1 were added about 30 mg $0sO_4$ (TEP solution) and 3.3 equiv. of N-methylmorpholin-N-oxide. Temperature $(25^{\circ}-70^{\circ}C)$ and the period for stirring varied with the nature of the substituents R^1 , R^2 of $\underline{3}$. When compound $\underline{3}$ was completely consumed (T.L.C.) sodium hydrosulfite, Florisil (60-100 mesh; Sigma Chemical Company) and water were added. After stirring and a short-path filtration (celite) followed an extraction with chloroform/ethyl acetate. Compounds $\underline{5}$ were chromatographed and often further purified by distillation.
- 11)a) M. Sekine, M. Nakajima, A. Kume, T. Hata, Bull.Chem.Soc.Jpn. <u>55</u>, 224 (1982).
 - b) T. Hata, A. Hashizume, M. Nakajima, M. Sekine, Tetrahedron Lett. <u>1978</u>, 363.
 - c) E. Öhler, E. Zbiral, M.El-Badawi, Tetrahedron Lett. 1983, 5599.
 - d) W. Waszkuc, T. Janecki, R. Bodalski, Synthesis 1984, 1025.
- 12) P. Sieber, Helv.Chim.Acta 60, 2711 (1977).

(Received in Germany 22 August 1986)